

RESEARCH & DEVELOPMENT. Building a scientific foundation for sound environmental decisions

Organization of **Presentation**

- 1. Status of IRIS Cancer Evaluation
- 2. Comments on a Libby Amphibole Toxicity Assessment

IRIS Cancer Evaluation

- ➤ Formally announced and initiated in Feb 2006 Federal Register
- ➤ Planning Stages
- ➤ Proposed Phased Approach

IRIS Cancer Evaluation Groundwork

- ➤ 2001, Asbestos Health Effects Conference, Oakland, CA
- 2003, Asbestos Mechanisms of Toxicity Workshop
- Collaboration with NIOSH for archived filter reanalysis
 - South Carolina Textile Plant (chrysotile)
 - NIOSH is publishing update
- Better characterization of historical asbestos exposure project
 - Comparison of exposures in key chrysotile and amphibole exposed cohorts
 - Project cancelled data unavailability

IRIS Cancer Evaluation

Purpose of the Phased Approach

- Address key technical issues, early in the project
- Provide technical building blocks for the cancer assessment
- Provide flexibility in document development as new data become available

Proposed Phased Approach

- Phase 1: Preparatory phase, laying the ground work
- > Phase 2: Quantitative work and document development
- > Finalization of document: Review and revision

Phase 1

- Scoping meeting (August 31, 2006)
 - Invited input from key individuals working on different asbestos issues across the Agency
- > Develop literature summaries and issue papers
 - Address key controversial issues
 - Provide technical building blocks for development of cancer assessment
- ➤ Investigate studies to better understand dose-response
 - Identify occupational cohorts for better exposure characterization
 - Identify data availability for nonoccupational cohorts

Libby Amphibole Toxicity Assessment

- > Available epidemiologic data
- ▶ Data Gaps
- ➤ Possible objectives for animal studies

Libby Amphibole

Available Epidemiologic Studies

- Libby Worker Mortality Studies
- The Morbidity and Mortality of vermiculite miners and millers to tremolite-actinolite, (Amandus and Wheeler, 1987)
- Cohort study of mortality of vermiculite miners exposed to tremolite (McDonald et al, 1986) (Updates in 2002 and 2004)
- Vermiculite, Respiratory Disease and asbestos exposure in Libby Montanna: Update of a cohort mortality study (P. Sullivan, 2007)

Vermiculite miners: Enoree, SC

Health of vermiculite minors exposed to trace amounts of vermiculite (McDonald et al, 1988)

Libby Amphibole Toxicity Assessment

- ➤ Three analyses of the Libby worker cohort are available support lung cancer estimate, which provide consistent results
- Sullivan's paper indicates data may be available to support quantitative risk estimates for Mesothelioma

Libby Amphibole Toxicity Assessment

- > Exposure estimates
 - PCM counts of personal filters
 - Data collected by WR Grace
 - Data collection forms and filters may be available to EPA
- >TEM surrogate metric is possible
 - Review of current and historical data indicate fiber size profile is fairly consistent
 - Convert historical PCM to TEM surrogate measure of material present

Libby Amphibole Toxicity Assessment

- ➤ May be derived from human epidemiologic data for both lung cancer and mesothelioma
- Derivation could be based on the Libby amphibole
- ➤ EPA policy is to use human data where available and of appropriate quality

Libby Amphibole Toxicity Assessment

Use of Libby cohort reduces technical and legal debates with respect to the Libby amphibole

- Fiber form
 (asbestiform, fiber, prismatic, cleavage fragment)
- Fiber mineralogy
- Influence of fiber dimension

Libby Amphibole Toxicity Assessment Data Gaps

- Smoking status in Libby worker cohort
- Libby amphibole specific Mode of Action information
- Some uncertainty in exposure estimates
- > Shape of low dose response curve
- Susceptibility for early-lifetime exposure

Animal Studies: Improve Derivation of an Inhalation Unit Risk

Mode of Action

- Demonstrate fiber toxicity in vitro/in vivo (e.g. plausibility)
 - · Similar biological activity as other forms of asbestos
 - · Relative toxicity to other forms of asbestos
- Examine role of various mechanisms to inform DR curve
 - ROS/RNS
 - · Direct clastogenicity

Information Which Could Inform Future Toxicity Assessments

- Exposure dosimetric
 - Fiber concentration (current)
 - Surrogate measure of a subset of material
 - Lung burden residence time
 - Surface area
 - Relative fiber potency
- > Episodic versus cumulative exposure
 - Short-term high intensity, shorter latency?
 - Deposition / clearance modeling
 - Less-than lifetime risk

Data gaps which may be informed by animal studies

- > Proof of the principle
 - (e.g. LA displays the same toxicity as other mineral fibers)
- ➤ Mode of action
 - Relative to other asbestos and mineral fibers
 - Can this inform low dose extrapolation
- > Early lifetime susceptibility
- > Episodic versus cumulative exposure
- > Explore dosimetrics

General Approach

- > Tiered approach to studies
 - Relative dissolution in vitro
 - in vitro mechanisms (ROS, RNS etc.)
 - Short-term in vivo
 - Intermediate and chronic in vivo
- Use other forms of asbestos as controls
 - Tremolite (UICC)
 - Amosite
 - Chrysotile (?)
- Measured dose
 - Fiber count
 - Dimensional characteristics
 - Mass
 - Surface are (?)
- > Tissue dose (initial and over time)
- > Harmonize with noncancer studies

Caution regarding quantitative extrapolation from animal studies to human exposures